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Revisiting modelling of fluid penetration into smoke detectors for low speed ceiling 

jets 

 

1. Introduction 

 

A smoke detector is in principle a container, which has partially permeable walls 

separating the gas volume in the detector from the volume around it. Walls delay fire 

detection as compared to a fully open detector. Heskestad [1] drafted a theory using 

dimensional analysis arguments for the time lag ∆t  of a products-of-combustion fire 

detector 

∆t l v= γ /          (1) 

where  v   is the mean convective flow velocity around the point detector, l the 

characteristic length scale, and γ  a non-dimensional coefficient characteristic for the 

geometry.  According to [1] Eq. (1) is valid presuming ‘viscosity effects are not 

considered important’.  

 

Brozovsky [2] observed the simple relationship of Eq. (1) did not hold for low ceiling 

jet velocities. In Fig. 1 his observations (dots) are plotted as a function of velocity v . 

Thin solid lines represent exponential fits by Brozovsky [2] on his limited set of data. 

Further data manipulation showed, an equation of the form 

)vv/(lt 0−= γ∆          (1') 

is also a plausible fit on the data. The numerical values of the parameters were: γl = 0.8 

m and 0v  = 0.075 m/s, which Brozovsky called a critical velocity. Fitting Heskestad's 

correlations on these data according to Eq. (1) would yield curves similar to # 1 and # 2 

in Fig. 1. These predictions are in contrast with experiments. No value of γl would fit 

experimental data.  
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Fig. 1. Entry lag time dependence on flow velocity past a detector. Dots (experimental 

data). (1) and (2):  The delay time according to Eq. (1) as explained in text. (3): Fit 

according to Eq. (1'), 0v  = 0.075 m/s). (4) and (5) Calculated models explained in text. 

 

2. Flow and pressure fields around solid bodies 

 

2.1 Principles of calculation 

 

There is a wealth of literature on flow around solid objects in a flow field using 

different techniques at different level of approximation  [6 - 10]. No general analytical 

solutions are available for all flow velocities. Furthermore, in the whole body of this 

literature only  some references were given on works, where the body is partially 

transparent  [7 - 8]. For these reasons here general techniques of flow modelling are 

attempted in the regions, where analytical solutions are available. Flow through the 

detector is treated as perturbation. To grasp the salient physics of the flow we first 

calculate the pressure field around a totally solid body for a constant velocity, and use 

that information to calculate flow through the mesh in and out of the fire detector. The 

validity of perturbation approach is not granted. Failure of it demonstrated by related 
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drag problem. Despite that, analytical approaches are so simple, it was decided to try 

them first. For calculating the flow around the detector Reynolds numbers are typically 

100 ... 1000. For flow through the mesh Reynolds numbers are in the range 0.1 ... 10. 

Therefore, the calculation can be made in two stages, and requires different 

approximations in both ranges. 

 

A smoke detector can be modelled as a solid object in a flow field, which is partially 

permeable. For modelling we set the center of the detector in origin, and arrange a flow 

along the negative x-axis with a velocity v∞  far from the origin towards positive x. The 

point on the detector, where negative x-axis penetrates the outer surface is a stagnation 

point. On the opposite lee side, there is a point, where the dynamic pressure is the 

lowest. For the smoke flow through the detector the insect mesh provides the biggest 

flow resistance. Without quantitative calculations, only through visual inspection of 

some detector constructions all other channels of the flow have much bigger cross 

sections, and relative to the mesh penetration pressure drop can be considered only as 

small.  

 

Therefore we concentrate here only on the ultimately simplified geometrical model of 

the detector: (i) a cylindrical or hemispherical outer mesh, (ii) small channels through 

the mesh into (iii) the interior of  the detector of total volume V. Due to additional light 

scattering barriers and flow channelling guides inside the detector the volume V  is 

considered a well stirred reactor, which communicates with the space outside the insect 

mesh through the holes on it. The other alternative in the inner space is to use laminar 

plug flow, and calculate time of  smoke front moving from the mesh the center point. 

For a smoke detector two geometrical, highly idealized models are used: (a) a two 

dimensional, infinitely long circular cylinder neglecting the presence of the ceiling, and 

(b) a three dimensional hemisphere setting the frictionless ceiling in the equatorial 

plane. First, potential flow is applied to both problems to account for the disturbance the 

detector causes on the free flow field.  

 

For calculation we set the coordinate system as shown in Fig. 2. The origin O is set to 

the center of the detector in the plane of the ceiling. Perpendicular to the plane of the 
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ceiling and along the center axis of the detector points the z-axis downwards. The 

detector screen is cylindrical or spherical showing as circle in the x-y-plane of Fig. 2. 

The screen is partially permeable for the flow, and idealized to a surface of zero 

thickness. The ceiling jet is assumed to be a free constant velocity flow approaching the 

detector parallel to the x-axis far left. The detector screen divides the space into two 

regions: (1) inside, and (2) outside. For modelling flow equations are written for both 

regions, and boundary conditions along the surface presenting the screen bound the 

regions together. 
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Figure 2. Coordinate system used for detector modelling. 

 

 

2.2 Inviscid potential flow 

 

Experimenting with different combinations of boundary conditions between the inside 

and outside regions showed, that no extra effects were obtainable. Therefore, potential 

flow a free stream of velocity v∞  is superposed with a two (cylinder) or three (sphere) 
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dimensional doublet  [8]. For solid bodies the radial velocity component rv  disappears 

on the surface. For a permeable body the first order perturbation theory is attempted, 

which would as mismatch yield to radial velocity distribution 

 

ϕε cosvr =           (2) 

 

where the numerical value of  ε is determined using experimental pressure distribution 

around the body slightly simplified  [7]. For laminar flow from the stagnation point to 

the separation angle the kϕ  the velocity obeys Eq. (2), after which it has a constant 

value reached at separation point. The experimental pressure amplitude for laminar flow 

is 
2

ks vqpp ∞=− ρ          (3) 

 

where q ≈ 1 for a cylinder and 0.75 for a sphere. For turbulent flow the pattern is 

similar, but numerical values of q differ slightly. The flow was not yet turbulent around 

the detector, and thus this combination is not discussed further. 

 

 

2.3 Laminar viscous flow 

 

A creeping laminar flow past a cylinder results in a logarithmic singularity (Stokes 

paradox) but past a sphere (Stokes's first problem) the pressure distribution is  

 

 

symmetric, given on the surface by  [10] 

ϕµ cos
a2
v3pp ∞

∞ −=          (4) 

 

By coupling to that field an additional radial flow velocity component into the sphere in 

the form of Eq. (2), it can be shown to be of the higher order in perturbation expansion 

than the second therm in the pressure distribution of Eq. (4). Therefore, two-stage 
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calculation is plausible. The flow inside the sphere satisfying Navier-Stokes equations 

to the same degree of approximation as for the outer flow takes place at constant 

velocity parallel to the flow far from the detector. Oseen has extended the calculation of 

Stokes as a power series of Reynolds number [11]. The second term of pressure 

averages to zero over the sphere. Therefore, it is not taken here as a separate case. 

 

3 Flow through small openings 

 

Calculating the smoke density inside the detector for a flow, where particles do not 

separate from the fluid, the time constant τw  of well stirred volume V is given 

asymptotically by 

V/Vw
&=τ           (5) 

where V&  volume flow in the detector. For a plug flow a similar time constant pτ  is 

obtained by dividing the radius of the detector by the average velocity inside the 

detector. Both concepts are used here. 

 

When the flow is laminar inviscid through the mesh volume flow is proportional to the 

square root of pressure difference [7].  

 

For viscid creeping fluid the flow through the holes takes place in a layer attached onto 

the surface of the mesh. For an order of magnitude estimate we look fully developed 

viscous flow, which can be solved accurately in a closed form for rectangular channels 

(Poiseulle flow) [7] or for circular tubes (Hagen-Poiseulle flow) [6 - 7]. Taking the 

circular variation volume flow  &V  through a hole of radius a is given by 

ds
dpr

8
V

4
0

η
π

−=&          (6) 

where η  is the dynamic viscosity of air, dp ds/  the pressure drop along the channel, 

and the radius of the circular hole 0r  . In Table 1 calculation forms are given for the lag 

time τw  (s) for different reasonable combinations of ambient and grid flow conditions. 

The formulas are preceeded by numerical factors ci. Radius of the detector is a, ratio of 
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combined hole areas to total grid surface area κ, and effective length of pressure drop 

through mesh δ. In Fig. 1 these time lags are plotted as a function of velocity v∞  for all 

calculated cases using rough estimations of the numerical coefficients ci in those cases 

they were not direct results from the derivation of the formulas. This is plausible for an 

order of magnitude calculations. 

Curve # 2 is viscid-viscid combination, and curve # 1 plug flow model for the same 

case. Curve # 5 is laminar-laminar combination with a very big difference between 

theory and observations. Curve # 3 presents laminar ambient causing viscid grid flow, 

which is still rather far from measured data. 

 

 

Table 1. Lag time τw  (s) calculation formulas. 

 Ambient laminar inviscid Ambient creeping viscid 

Grid laminar inviscid 

∞v
ac1 κ

 NA 

Grid creeping viscid 
22

0
2 vr

ac
∞κ

δν  
∞vr

ac 2
0

2

3 κ
δ  

 

 

 

 

4. Conclusions 

 

Order of magnitude calculation formulas were derived for the lag time of fire detectors 

using two different scales of flow: (i) ceiling jet flow around the fire detector, and (ii) 

flow through the mesh. At different jet velocities different flow approximations apply. 

The experimental data do not support any of the proposed theoretical models since both 

the magnitudes of calculated lag times differ considerably from the observations, and 

asymptotically the theoretical curves do not have a pole at a finite velocity. As for the 

flow through the mesh, viscosity effects cannot be neglected. 
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The reason for the negative result is not known for sure. Some guesses could be made to 

guide further research. Perturbation approach may not be valid, because the distribution 

might be finite even for a very small flow through the detector. There is an analogy with 

the drag problem of a sphere [10]. The flow through the grid is never fully developed. 

This was not taken into account, because of difficulty of modelling. 

 

No apparent experimental errors were found in [2]. Therefore, the behaviour described 

by Eq. (1') seems to indicate the flow might have a 'non-newtonian' character plugging 

the flow at velocities lower than 0v . Qualitatively, such a flow occurs, if the fluid, 

which here is an aerosol, behaves collectively like a non-newtonian continuum fluid of 

Bingham plastic [3]. The analytical theories of such fluids would in principle allow 

calculation of the flow in and out of the detector [4, 5]. However, there seemed not be 

available experimental data of rheological properties of smoke. The tacit assumption 

has always been, smoke behaves like air, an almost perfect newtonian fluid. 'Non-

newtonian' behaviour might also be caused by electric rather than fluid phenomena. 

Most of the smoke particles are charged. They might stick on the grid at low velocities. 

However, without further detailed experimental observations, if not yet readily 

available, these questions cannot be settled. 
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